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1. INTRODUCTION

The concept of a term rewriting system (TRS) is paradigmatic for the study of
computational procedures. TRSs play an important role in various areas, such as
abstract data type specifications, implementations of functional programming
languages, and automated deduction. Rewriting is concerned with syntactical objects
like terms, strings, and term graphs, but also with equivalence classes of terms or
other structured objects. Terms may be first-order or higher-order, such as A-terms
or proofs in some deduction system. Many of the basic definitions and facts can
already be stated on a more abstract level, where the structure of the objects to be
rewritten is not yet of relevance. To express this level of abstraction we use the
neutral term “reduction” instead of “rewriting.” In the next section we give the
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necessary elementary definitions and basic facts about abstract reduction systems
(ARSs).

We develop diagram techniques for proving confluence in abstract reductions
systems. The underlying theory gives a systematic and uniform framework in which
a number of standard proof techniques for confluence, widely scattered throughout
the literature, can be understood. These results include Newman’s lemma (1942),
Lemma 3.1 of Winkler and Buchberger (1985), the Hindley—Rosen lemma (1964),
the Request lemmas of Staples (1975), the Strong Confluence lemma of Huet
(1980), and the lemma of De Bruijn (1978), which served as a starting point of this
research. The notions of “diagram technique” and “standard proof technique” are
essentially open-ended. We certainly do not claim to cover or subsume them all.
For example, Proposition 4.1 is a simple confluence result obtained by a diagram
technique that is nor a special case of the Theorem 4.28, the strongest theorem we
obtain with decreasing diagrams. The completeness results at the end of Section 4
are rather weak and do not want to suggest some kind of completeness with respect
to standard proof techniques. However, we do claim ease in the use of our method
as compared to standard proof techniques. For all results stated above to be
generalized by diagram techniques we found the diagram technique more intuitive
and easier to use.

The present paper extends Van Qostrom (1994a, 1994b) in the following ways:
all results about reduction diagrams are new, and the concept of a trace-decreasing
diagram refining the concept of a decreasing diagram has a clearer visualization and
yields a new proof of the main theorem. With over 30 figures the approach here
Is more geometric, as opposed to the more algebraic approach of van Qostrom
(1994a).

We will assume that the reader is familiar with the terminology and notation of
elementary set theory and logic, such as sers, boolean operators, quantification,
relations and functions, inverse, reflexive, symmetric, transitive and equivalence
relations, closure operations such as the reflexive, symmetric, and transitive closure
(also simultaneously), and so on. Moreover, we assume the definitions of ( partial)
order, strict order, totally or linearly ordered set (chain), well-founded order and
well-founded induction.

For (finite) mudltisets, denoted by [sq, 8, ... s, ], we refer to the appendix,
where the basic definitions and the necessary results are stated. The empiy multiset
1s denoted by [ ]. The set of finite multisets over S is denoted by S#.

A finite sequence of length n in S'is a function s: {0, 1, .., n — 1} - S(n=0), also
denoted by {sq.8y. .8, 1> OF 881 -5, 1. The empty sequence is denoted by
< ». The set of finite sequences in S is denoted by S*. Concatenation of finite
sequences ¢ and 7 is denoted by o - 1.

2. ABSTRACT REDUCTION SYSTEMS

2.1. DEFINITION. An abstract reduction system is a structure .o/ = (A, { =, lae 1)
consisting of a set 4 and a set of binary relations —, on 4, indexed by a set . We
write (A, =, =) instead of (4, { =, |ae{1,2}}). For ae/ the relations —, are
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called reduction ot rewrite relations. Sometimes we will refer to —, as «. In the c.ase
of just one reduction relation. we simply write —. We write —; for the union
Ut = lxell.

In the following. we will consider several equivalence relations on the set 4. One
of them is identity on 4. As the elements of 4 will often have a syntactic nature, we
will use = to denote identity on A, conforming to the convention that = expresses
svitactical identity. The usual symbol = to denote identity now becomes available
to denote another important equivalence relation, namely convertibility, the equiv-
alence relation generated by —. Similarly, =, denotes the equivalence relation
generated by —,. for every ae .

Let o/ =(d4,{—,|xel}) be an ARS and let xel If for «,beA we have
(a,bye —,. we write a—~, b and call b a one-step (o-)reduct of a. A reduction
sequence with respect to —, is a (finite or infinite) sequence dy—r, d, =, d; =4 -
Every reduction sequence has a first element, and finite reduction sequences also
have a last clement. Whenever we want to stipulate these elements we use the
following terminology: a reduction sequence starting from « is called a reduction
sequence of «. and if such a reduction sequence ends in b, then it is called a
reduction sequence from a to b. The element b is called an (a-)reduct of a in this
case. Reduction sequences are also called reduction paths. A reduction step is a
specific occurrence of —, in a reduction sequence. A reduction step from a to b is
a specific occurrence of a—, b. The length of a finite reduction sequence is the
number of reduction steps occurring in this reduction sequence (one less than the
number of elements!). An indexed reduction sequence is a finite or infinite sequence
of the form ¢ —, b=y ¢—, -+ with a. b, ¢,..€ 4 and «, f, 3, .. € . Thus an indexed
reduction sequence is a reduction sequence with respect to | { =4 |ael}, with the
reduction steps marked with the index of the reduction relation to which the step
belongs. We write a —, b if we do not wish to specity the index of the reduction step.

The transitive reflexive closure of -, is written as -, According to the definition
of transitive reflexive closure, we have a —, b if and only if there is a finite
reduction sequence a=da,—, a,—, --- =, a, =b(n>=0). If we write ¢ « —, b, then
o denotes an arbitrary reduction sequence from a to b. We write gl d =, d,
=5 -+ =, b whenever we want to stipulate a specific reduction sequence ¢ from «
to h. Similarly. finite indexed reduction sequences will be denoted by a:a —-, b.

The reflexive closure of —, is ==, The symmetric closure of —, is «,. The
transitive closure of —, is — . The inverse relation of —, I8 —»;‘, also denoted by
. Let =4 also be a reduction relation on 4. The union =, U = is denoted by
—,s- The composition —_ and —4 18 denoted by —, - =5 We have a - . =il
and only if ¢ —, b —, ¢ for some be 4.

ARSs are also called labeled transition systems in the modal literature, see for
example Popkorn (1994). An ARS with just one reduction relation — is called a
replacement system in Staples (1975) and transformation system in Jantzen (1988).
Below we will define a number of properties of the reduction relation —. If this
reduction relation has a certain property, then we will attribute this property also
to the ARS in question and vice versa. Most of the properties are first defined
element-wise, that is, as a property of elements of the ARS.
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2.2. DEFINITION (confluence). Let .o/ = (A, {—,|xel}) be an ARS, «, fel and

let - =—,.

(i) o commutes weakly with f if the diagram of Fig. la holds, ie., if Va, b,
ceAd3deA(cya—, b=c —, d «—;b). Inashorter notation: « - —, S =, - .
Furthermore, « commutes with f# if —, and —, commute weakly, or, equivalently:
<-<——/). C < — - <—<—/),,

(i) aeAd is weakly confluent if Vb, ce AJde A (c—a—b=c —> d« b).
The reduction relation — is weakly confluent or weakly Church-Rosser (WCR) if
every a € 4 is weakly confluent. Alternative characterizations are: « - — S~ .
or — is weakly self-commuting (see Fig. 1b).

(i11) a€A 18 confluent if Vb,ceA3IdeA (¢ «—a—>b=c—d«b).
The reduction relation — is confluent or Church-Rosser or has the Church-Rosser
property (CR), if every a € 4 is confluent. Alternative characterizations are: «— . —
S —» - «—, or — Is self-commuting (see Fig. 1d).

The property WCR is often called “local confluence,” e.g., in Jantzen (1988). In
the following we will use the terms confluent and Church-Rosser (CR) without
preference. Likewise for weakly confluent and WCR. The following proposition
follows immediately from the definitions. Note especially the equivalence of (i)
and (v). Some authors call Definition 2.2(iii) confluent and Proposition 2.3(v)
Church-Rosser.

2.3. PROPOSITION.  For every ARS (A, —), the following are equivalent:

(1)  — is confluent
(11) = isweakly confluent

(1) - is self-commuting

o™

(a) (b) () (d)
(€) 0

FIG. 1. Various confluence patterns.
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(Iv) — == & =, or Ya, b,ced Ade A (¢c+—a - b=c¢ —> d«b),
that is, the diagram in Fig. le holds.

(V) =€ ~» .« or Ya,beAdceAla=b=a—> ¢« b), where = s
convertibility, the equivalence relation generated by —. or the smallest equivalence
relation containing —. See the diagram in Fig. 1f.

Proof. The equivalence of (i)-(iii) follows immediately from the definitions,
using that — is reflexive and transitive itself. Obviously, (v) implies (i), and (i)
implies (iv) in turn. It remains to prove that (iv) implies (v). Assume (iv) and let
a=b. Recall that = is the equivalence generated by —. Hence there exist «q, ..¢,, € A
(n=0) such that a=ay«> - ©a, =b, where « is the symmetric closure of —.
We argue by induction on ». If n=0, then we trivially have ¢ — ¢ « b by taking
c=a=b. Assume (v) has been proved for n and let a=ay o -+ —a, —a,,, =b.
By the induction hypothesis there exists ce 4 such thata — ¢ ««a,. lf a,,, | — a,,
then we are done. If ¢, —a, . ,, then we can apply (iv) to a,,, < «, — ¢ and we
are also done. This completes the proof of (v). |

2.4. DEFINITION (normalization). Let .o/ =(A4, —) be an ARS.

(1) waeAdis a normal form if there exists no b e 4 such that a — b.

(i1) ae A is weakly normalizing (WN) if ¢ — b for some normal form b e 4.
The reduction relation — is weakly normalizing if every ae 4 is weakly normalizing.

(iii) aeA is strongly normalizing (SN) if every reduction sequence starting
from « is finite. The reduction relation — is strongly normalizing if every ae A is
strongly normalizing. Alternative characterization: « is well founded (WF). Obviously,
SN implies WN and « is SN if and only if — is WF.

(tv) Let ae 4. The reduction graph %(a) of a is the ARS with all reducts of
a as elements and the reduction relation — restricted to this set of reducts. Let
Bc A. Then B is cofinal in </ if Yae A 3be Ba — b. We say that — has the
cofinality property (CP) if in every reduction graph %(a), a € 4, there is a (finite or
infinite) reduction sequence ¢ =a, —a; — --- such that {a,|n>0} is cofinal in
Y(a).

(v) LetaeA. The component 6(a) of a with respect to conversion is the ARS
with {a'€ A|a=a'} as set of elements and the reduction relation — restricted to
this convertibility class. Now define the property CP= for .«/ to hold if every
component 6(a), a € A, contains a reduction sequence ¢ =ay, — a, — --- such that
{a,|n=0} is cofinal in %(a).

Lemma (Klop (1980)).  For every ARS we have:

(i) CP=CR
(it) CR = CP, provided the set of elements is countable.

(i1) CP<=CP=, due to Mano (1993).

Proof. Let .o/ =(A, —) be an ARS.
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(1) Assume CP and let b « a — ¢ for some a, b, ce A. Let ag —a; --- be
a reduction sequence such that {a, |n >0} is cofinal in %(a). We have b, ce 4(a),
so by the cofinality there exist 7, j >0 such that b —» 4, and ¢ — a;. If i < j, then
a; is the desired common reduct, otherwise a;.

(i1) Assume CR, A countable, and let ¢ =a,, a,,--- be an enumeration of
%(a). Define recursively by =a and b, ,, as a common reduct of b, and @, ,,. Then
be == by -+ yields a reduction sequence and {b, |n >0} is cofinal in 4(a).

(1i1) CP~ trivially implies CP since any cofinal reduction sequence a = a, —
ay— -+ 1n 4(a) 1s also a cofinal reduction sequence in %(a). For the converse,
assume CP. By (i) we have CR in the formulation of Proposition 2.3(v). Let a e 4
anda=ay —a, » --- be cofinal in 4(a). If &' € 6(a), then ¢’ =a, so by CR we have
a —a" for some a"e€%(a), hence a' — «; for suitable /=0. It follows that
{a,|n=0} is cofinal in 6(a).

2.6. Lemma (Newman's lemma). For every ARS we have SN A WCR = CR.

Proof. Let o/ =(A, —) be an ARS. Short proofs of Newman’s lemma can be
found in Huet (1980) and in Barendregt (1984). One can also obtain proofs of
Newman’s lemma from more general results on reduction diagrams, see Corollary 3.9
and Example 4.20 in Section 4. We list two proofs below. The first proof is the
canonical one by well-founded induction and anticipates the proof of the main
theorem on trace-decreasing diagrams, Theorem 4.19. The second proof using multisets
is also important, since this argument will play a role in Proposition 4.1. Assume
./ has the properties SN and WCR.

(1) As — is SN, « is WF, and hence «* is well-founded. Thus we can apply
well-founded induction, with respect to «*. We prove Vae 4 ¢(a), with ¢(a)
expressing that a 1s confluent. We have to show that ¢ is «—*-inductive. Let € A4
and assume we have proved ¢(«¢') for all ' € A with ¢’ «* a. Let ¢ «—a — b. If
a=b or a=c¢, then we are done. Otherwise, ¢ « ¢’ «a—b" — b for some ¢,
b'e A. Apply WCR to ¢/ < a— b’ in order to find ' such that ¢/ — d' « b'. We
have o' —a and ¢’ <, so by the induction hypothesis ¢(b') and ¢(¢’). The first
gives us e€ 4 such that d' — ¢ «— b, 50 ¢ <« ¢’ = d' — ¢. The second gives us
de A such that ¢ = d «— ¢, s0 ¢ = d «— b. Making a picture can now be helpful
to see that we have proved ¢(«).

(11) Recall that = is the equivalence generated by —. Let a =5, then there
exist g, ..tt, €A (n=0) such that a = ay « --- <> a, = b, where < is the symmetric
closure of —. We view aq <> -+ <>, as a landscape with peaks a il
valleys a;_| — a; < a,,, and slopes a; > -+~ —a, . or a; « ---—a,,,, for some
k>0.1fay & .-+ < a, contains no peaks, then it is either one (maximal) slope, two
(maximal) slopes with one valley, or one single point. In all these cases we can
easily find ce 4 with ¢ = ¢ « b. If qy & .. <> a, does contain a peak, say a;_,
—a;— a;,,, then we can eliminate this peak by applying WCR: for some de 4 we
have a; | = d «— a;,,. By the definition of transitive closure, there exist ¢, .., ¢,,
o Cp€A (non' 20) such that a; | - ¢, = -+ s, =d=c), « - - = —a;, .

1< d;—a
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Then the landscape becomes g« -+« d; (> ¢ < o > de oo oa;
e .- e a,. This does not seem to help very much. However, we shall argue that
this procedure of eliminating peaks must terminate, so that we necessarily end up
with a landscape between «, and a,, containing no peaks. Then we will have proved
CR as above. The argument uses multisets as defined in the Appendix. To a landscape
dy = -+ —d, we can associate the multiset [d,, ..., d,]. As — is SN, « is WF, and
hence «* is a well-founded order. By Lemma A.3(ii), the corresponding multiset
order < is also well founded. Now we observe that in the procedure of eliminating
peaks the multisets associated to landscapes descend in the sense of this multiset
order. For example, [d@y.on @12 Cloes @y C1a @iy, d,] originates from
[wgs v, ] by replacing a, by the multiset [¢;, ...d, .., ¢}] of strictly smaller
elements. It follows that the procedure of eliminating peaks must terminate. J§

3. REDUCTION DIAGRAMS

Consider the ARS «/=(4,{-,|xel}), which will be fixed throughout this
section. A geometric tool for finding a common reduct of the end points of two
diverging indexed reduction sequences is the use of reduction diagrams. Reduction
diagrams are built up from so-called elementary diagrams, see the examples in
Fig. 2. A completed reduction diagram contains the desired common reduct.

An elementary diagram is a scalable rectangle with vertices representing elements
of A4 and edges representing indexed reduction sequences. The upper edge represents
zero or one reduction steps from left to right. The left edge represents zero or one
reduction steps downwards. The lower edge represents an indexed reduction

3
a—*ﬁ———)b a“ﬂ____>b a—*—[z——)b
J
« I o A «
¥
¢ ———F—»d ¢ ———»d c— — —»d
() (i (i)
8
a a 9_“'”’ a a
o @
SO ;IT__H; e .
(iv) v) (vi)

FIG. 2. Elementary diagrams.
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sequence of zero or more steps from left to right. The right edge represents an
indexed reduction sequence of zero or more steps downwards. Not all combinations
are allowed. As a general rule we require that if the left and/or the upper edge
represent zero reductions steps, then the opposite edge(s) must also represent zero
reductions steps and the adjacent edges must represent at most one step.

To keep the diagrams orthogonal, opposite edges can be scaled to any convenient
length, irrespective of the number of reduction steps represented by that edge. In
particular edges representing zero reduction steps have positive length, but they will
be depicted by dotted lines for clarity. In indexed reduction sequences, such “empty
steps” will be made visible by —,, with e¢ /. Recall that finite indexed reduction
sequences are denoted by ¢ —,; h. Now it is time for a formal definition.

3.1. DerINITION (elementary diagrams).

(1) A proper elementary diagram 1is a configuration as depicted in Fig. 2
under (1), which includes the cases (ii) and (iii).

(i1) A wrivial elementary diagram is a configuration as depicted in Fig. 2
under (1v), (v), or (vi).

(11) A splitting elementary diagram is a proper elementary diagram with at
least one edge representing at least two reduction steps, that is, a configuration as
depicted in Fig. 2 under (11) or (iii). The reduction steps on edges representing at
least two reduction steps are called splitring steps, and the intermediate points are
called splirting points.

The origin of an elementary diagram is the upper left corner point. The diagonal
of an elementary diagram is the diagonal through the origin.

Elementary diagrams are used as tiles to construct diagrams by adjoining elemen-
tary diagrams in inner corners of the borderline, see Fig. 3. Sometimes we will
abstract from the elements labeling the corner points, from the indices of the
reduction relations labeling the edges, and from the direction of the arrows: the
arrows are always pointing from left to right or downward. The abstracted diagrams
are also called diagrams or tilings. The rightmost diagrams in Fig. 3 and 6 are
tilings as well as the three elementary tilings in Fig. 4. A beautiful example of a
tiling is provided by the fractal-like Fig. 5, constructed from the elementary tilings
in Fig. 4 (filling in all edges for aesthetic reasons). Interestingly, Fig. 5 can already

FIG. 3. A diagram with borderline ¢« b~ by d —, d¢" and inner corners ¢« b~ b and
be ' — . d" and the corresponding tiling.



180 BEZEM ET AL.

FIG. 4. Three elementary tilings used in Fig. 5.

be obtained with the leftmost elementary diagram (suitably filling in right and
lower edges). The middle and rightmost elementary diagrams in Fig. 4 are sufficient
for the upper (and the left) part of Fig. 5, both with one limit point, whereas the
whole diagram has a borderline of limit points. The upper (and the left) part play
a role in the sequel as they are the graphical representation of the classical counter-
example against WCR = CR in Example 44. Figure 5 also serves as an example of
how diagrams are scaled to accomodate adjoining. Of course, when depicting a
tiling we always tacitly assume that it has been obtained by abstraction from a
reduction diagram which is correct in the sense of Definition 3.2. The aim of the
construction process is to obtain a completed reduction diagram as in Fig. 6.

3.2. DEFINITION.  Let g:a —»;b and 7:a —,¢ be two indexed reduction
sequences of a. Then ¢ and t are the spanning edges of a class of ¢, z-reduction

-

FIG. 5. Fractal- or Escher-like figure,
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FIG. 6. A completed diagram and the corresponding tiling.

diagrams, simply called diagrams when ¢ and t are clear from the context. The
corner point a will be called the origin of these diagrams. The class of g, r-reduction
diagrams will be inductively defined. Along the way we will also define the notions
borderline and inner corner of a diagram, see Fig. 3.

(1) The empty diagram with spanning edges ¢ ««—,a —», b is a diagram with
the spanning edges themselves as borderline.

(ii) If D is a diagram with borderline ¢=d, < --- < d, =b having inner
corner d,_, «d;,—d,,,, then we distinguish the following four cases. Every
extension of D obtained in any of the applicable cases is also a diagram. Here and
below firting means that the spanning edges of the elementary diagram that is
adjoined to the diagram are identical to the inner corner and that the elementary
diagram is scaled to the right size.

(1) It d, e ,di—yd;,, with o, fel, then we extend D with a fitting
elementary diagram of type (i) from Fig. 2 and change the borderline by replacing
di e d;=yd; . by d, | —,d, «,;d, : that is, the reduction steps represented
by the left and upper edges are replaced by the indexed reduction sequences
represented by the lower and right edges of the elementary diagram.

(2) fd,_, «,d —.d;, ., with ael then d;,,, =d, and we extend D with
a fitting elementary diagram of type (iv) from Fig.2 and change the borderline
accordingly.

(3) Ifd,«.d—gd . with fel then d;,_| =d; and we extend D with a
fitting elementary diagram of type (v) from Fig.2 and change the borderline
accordingly.

4y Wt d,_ . d—-,d,,, then d, ,=d,=d,, | and we extend D with a
fitting elementary diagram of type (vi) from Fig.2 and change the borderline
accordingly.

A proper inner corner is an inner corner of two nonempty steps, that is case (iil)
above. A diagram is completed if the borderline is of the form ¢ —»,d «—,b for
suitable d: that is, without inner corners. The lower edge ¢ —, d and the right edge
b —,d are called the completing edges.

Intuitively, infinite diagrams are obtained by applying the generating rules
(1)-(4) under (i1) in Definition 3.2 infinitely many times. Any inductive definition
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only allows for finite successive application of the generating rules, so that Definition
3.2‘2i\'es us only finite diagrams. It is well known that infinite sequences can be
oblz;incd as limits of converging sequences of finite sequences, using an appropriate
metric for finite sequences: d(s.s') =275 where k is the maximum leng‘th. of a
common initial subsequence of s and s'. The resulting metric space of (finite or
infinite) sequences is the metric completion of the metric space of finite seguences.
See Sutherland (1976) for general information on metric spaces. In a similar way
we can obtain infinite o, t-diagrams as limits of converging sequences of finite o,
t-diagrams. the metric being (D, D')=27% where k is the minimal length of a
reduction sequence from the origin to an elementary diagram on which D and D’
differ. (This is analogous to the maximum length of a common initial subsequence
above.) Here we also count empty steps, and we take d(D, D')=0 if D and D’
coincide. As a converging sequence of finite diagrams whose limit is an infinite
diagram one can take the successive stages in the construction of the infinite
diagram. We stress the fact that infinite diagrams thus defined have finite spanning
edges. We could have defined a larger class of infinite diagrams including those with
infinite spanning edges, but the latter are less relevant for confluence. From now on
we will work with finite as well as with infinite diagrams. We will always stipulate
when a diagram is infinite and reserve the term “diagram” for finite diagrams. We
shall now develop some theory about diagrams which seems to be of independent
interest.

3.3. DerINITION.  Let ED be a set of elementary diagrams. We will always
assume that ED contains all trivial elementary diagrams. Moreover, ED is full if for
every proper inner corner there exists a fitting elementary diagram in ED.

3.4, ExampLE.  Assume —; is WCR. Let ED consist of all possible proper
elementary diagrams and all trivial elementary diagrams. Then ED is full.

3.5. DEerFINITION.  Diagrams can be ordered as follows. Let D and D' be finite or
infinite diagrams. Then D = D' if and only if D is an initial subdiagram of D', that
is, D fits on D’ with coinciding origins. If D = D', then D’ is called an extension
of D. Obviously, = is a partial order.

3.6. LemMa. Let ED be a set of elementary diagrams and consider finite or
infinite a. t-diagrams built from these. Every diagram has a maximal extension with
respect to .

Proof. Let S be the set of finite or infinite ¢, r-diagrams and consider D e S. Let
D=i{DeS|D= D'} and let € be a chain in D. Since C is totally ordered by =,
all diagrams in C fit when they are laid over each other with coinciding origins.
Consider the figure F that arises when all diagrams from C are laid over each other
with coinciding origins.alf Fis a finite or infinite diagram, then F is obviously an
upper bound of C in D. Now D contains a maximal element by Zorn’s Lemma,
which is the desired maximal extension of D. So it remains to prove that Fis a finite
or infinite diagram. Consider the empty diagram with spanning edges ¢, 7. If there
is one element in C with an elementary diagram in the inner corner at the origin,
then this elementary diagram is unique since C is totally ordered. Adjoin this
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elementary diagram to the empty diagram, then the new diagram has two inner
corners, which are treated in a similar way as above. This process yields a sequence
of finite diagrams of which F is the limit. J§

3.7. LemMA. Let ED be a full set of elementary diagrams and consider finite or
infinite diagrams built from these. If a maximal diagram is finite, then it is completed.

Proof. Since ED is full, any maximal finite diagram with spanning edges
¢ «—,a —,; b has a borderline without inner corners of the form ¢ —»,d «,; b for
suitable d. |

3.8. LEMMA. Every infinite diagram contains a reduction sequence with infinitely
many horizontal splitting steps and infinitely many vertical splitting steps, in particular
with infinitely many nonempty steps.

Proof. Recall that infinite diagrams have finite spanning edges by definition.
The lemma would be false if infinite spanning edges would be allowed (for example,
if all steps are empty). Let D be an infinite reduction diagram with origin o. We
shall prove that D contains an infinite subdiagram whose origin can be reached
from o via a reduction sequence containing at least one vertical splitting step.
This suffices for the lemma, since we can obtain the same result with a horizontal
splitting step instead of a vertical splitting step by symmetry, and we can alternate
the two versions infinitely many times to obtain the desired “meandering” reduction
sequence. In the sequel we treat empty steps in the diagram just as any other
nonsplitting step.

Observe first that, with the infinite diagram D as depicted in Fig. 7 (left), at least
one of the points o' and 0" is origin of an infinite subdiagram of D, since the areas
H and V, separated by the dotted line, cannot both be finite. More precisely, area
H has finite spanning edges and is hence a (finite or infinite) subdiagram with
origin o'. If the dotted line is infinite, then area H is an infinite subdiagram with
origin o’. Otherwise, if the dotted line is finite, then it can be used as a spanning
edge and the area V is also a (finite or infinite) subdiagram with origin 0". As H

FIG. 7. Infinite subdiagrams and projection of V-steps.

643/141/2-8
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and V cannot both be [inite diagrams, at least one of them is an infinite subdiagram
of . Let us indicate the two possibilities (not necessarily excluding each other) of
moving from o to the origin of an infinite subdiagram by H(orizontal) and V(ertical).
So 0 = o' is an H-step if o' is the origin of an infinite subdiagram, and 0 — 0" is a
Vostep if o” is the origin of an infinite subdiagram. By the argument above sequences
of H- and V-steps can always be extended and come together with sequences of
nested infinite subdiagrams. See Fig. 7 (right). for an example, where we represent
the successive H- and V-steps by double lines.

Let 7 be an infinite sequence of H- and V-steps in D as above, so every point
on r is the origin of an infinite subdiagram. Since infinite diagrams have finite
spanning edges, 7 does not contain an infinite sequence of H-steps (nor of V-steps,
but we do not need this). We must prove that D contains an infinite subdiagram
whose origin can be reached from o via a reduction sequence containing at least
one vertical splitting step. We claim that 7 contains such an origin, and prove this
by contradiction: assume no point on m can be reached from ¢ via a reduction
sequence containing at least one vertical splitting step. By this assumption of every
succession in 7w of an H-step immediately followed by a V-step, the H-step forms the
upper and the J-step forms the right (non splitting) edge of an elementary diagram
in the original infinite diagram, whose left edge is again non splitting (see Fig. 7
(right), the lower edge of this elementary diagram may contain splitting steps. but
this does no harm). Starting with the first HV-succession in 7, we can iterate this
argument until we arrive at the vertical spanning edge of the original infinite
diagram (see Fig. 7 (right)). So the V-step of the first HV-succession is, so 10 say,
projected on the vertical spanning edge of the original infinite diagram. All V-steps
can be projected in this way, in order of their appearance in 7. As the original
infinite diagram has finite spanning edges, 7 can only contain finitely many V-steps.
This conflicts with 7 being infinite and not containing an infinite sequence of
H-steps. i

3.9. CoROLLARY. If =, is SN, then all reduction diagrams are finite. Moreover
we have Newman's Lemma 2.6: if —; is SN and WCR, then —, is CR.

Proof. The first statement follows by contraposition of Lemma 3.8. For the
second, assume —; is SN and WCR. By WCR the set ED of all possible elementary
diagrams is full (see Example 3.4). Let D be the empty diagram with spanning edges
¢ «—ya —>;b. By Lemma 3.6, D has a maximal extension D’ which is finite by SN.
By Lemma 3.7, D" is completed. So every empty diagram can be completed, or, in
other words, —;is CR. |

4. CONFLUENCE BY DECREASING DIAGRAMS

In this section we present a powerful criterion for confluence of ARSs. The method,
developed by van Oostrom (1994a, 1994b) and called “confluence by decreasing
diagrams.” generalizes several well-known confluence criteria such as Newman’s
Lemma 2.6, Lemma 3.1 of Winkler and Buchberger, which we generalized to
Lemma 4.3, the lemma of Hindley and Rosen (Lemma 4.21), the Request lemmas
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of Staples (Lemma 4.22), and Huet’s Strong Confluence lemma (Lemma 4.29).
Actually, van Oostrom’s method has been prepared by an unpublished note of De
Bruijn (1978), containing a slightly weaker result with a complicated inductive
proof, see Lemma 4.30. The notion of decreasing diagrams was not yet present in
that note.

To illustrate the use of diagrams for confluence, we start with the following
proposition, which is proved by a generalization of the multiset argument (ii) for
Newman’s Lemma 2.6. Observe that the role of the elements there is taken over by
the indices of the reduction steps here.

4.1. Proposition. Let o/ =(A,{—,|ael}) be an ARS with the index set I
equipped with a well-founded order <. Let ED be a full set of elementary diagrams
and assume that every proper elementary diagram from ED has the property that the
multiser of indices along the two completing edges is smaller than the multiset
consisting of the two indices along the spanning edges. Then every diagram can be
completed. In particular, —, is confluent.

Proof. Consider a configuration as in Fig. 8 (left), with «, fel Under the
conditions of the proposition, the multiset of indices along the edges ¢’, ' is smaller
than [a, #]. Generally, the multiset of indices along the borderline of the diagram
decreases when a proper elementary diagram is adjoined. For reasons of space
(surface), at most finitely many trivial elementary diagrams can be adjoined one
after the other, during which the multiset stays the same. Thereafter the diagram
must either be completed or a proper elementary diagram can be adjoined since ED
is full. As the multiset order <, is well founded by Lemma A.3(ii), it follows that
this procedure terminates with a completed diagram.

4.2. Remark. In fact the proposition above holds irrespective of the direction of
reduction steps in the completing edges of elementary diagrams; that is, we can
allow those steps to be in «, instead of —,. Such diagrams can tentatively be called
elementary conversion diagrams, depicted in Fig. 8 (right).

The proposition can be further sharpened by allowing nonsplitting elemen-
tary diagrams in ED which are stationary, that is, corresponding to reductions

FIG. 8. Adjoining an elementary (conversion) diagram.
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de. ce,a—,b—,dwith [« f]1=[y J]. The surface argument handling the tri-
vial diagrams can also handle stationary nonsplitting elementary diagrams.

4.3. LemMma (Lemma 3.1 of Winkler and Buchberger (1985), generalized). Let
o =(A, =) be an ARS, B a set with well-founded order < and f: A — B a function.
We say that a and b are connected below ¢ (w.rt. B, <, f), denoted by a Sob, if
there is a conversion a=ay, < - < a, =b such that fla;)< f(c) for all 0 <i<n.
Furthermore, .o/ is called connected if Va, b,c€ A (a—c—b=a S b)Y We call o
weakly connected if, for all a, b, ce A, a <+~ ¢ — b implies either a & boor there exists
de A such that a —d « b and f(d)< f(¢). Then we have:

(1) Every connected ARS is confluent.

(ii) Every weakly connected ARS is confluent.

Proof. The idea is to assign as index to any reduction step a — b the multiset
[ fla), flb)] and to use Proposition 4.1, sharpened by Remark 4.2. Consider the
ARS o/ * = (A4, { -, |xel}), with reduction relations —, defined by ¢ —, 4 if and
only if a— b and a=[f(a), f15)]. Then — =) {—,|xel} =—,.

(1) Since ./ is connected it follows that we have a full set of elementary
diagrams. Moreover, the decreasing condition in Proposition 8 in the version with
completing steps in <, is satisfied since the multiset associated to a, «> - <> a,,.

[[.f(a())* A/‘(al)]! [./V(al)w .f‘(a?.)]s seey [./.(an—l)v .f(an)]]*

is smaller than [[ fla,), f(¢)], [ fle), fla,)1] when fla,)< f(c) for all 0 <i<n.
This can be seen by either using the nested multiset order or simply by omitting the
inner square brackets and using the ordinary multiset order. In both cases the order
is well founded, see Lemma A.3(ii).

(1) By Remark 4.2, in particular the second paragraph. J

4.4. ExampLE. The classical counterexample to WCR = CR, the ARS with
reductions a <+ b5 ¢ —d, leads to a full set of elementary diagrams such that not
every diagram can be completed. Let ED be the set consisting of the two proper
elementary diagrams depicted in Fig. 9 plus their mirror images with respect to the
diagonal. Then ED is full. However, the diagram from Fig. 10 cannot be completed,
since subdiagrams continue to arise with exactly the same spanning edges as the
original diagram. See also the upper (and the left) part of Fig. 5.

b ———c ¢c———b
l l
b c
| !
@i a Ao d

FIG. 9. Elementary diagrams not giving confluence.
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Q e

FIG. 10. A diagram which cannot be completed.

4.5. Notation. In the sequel we will consider a fixed ARS .«/ =(4, { -, |xel}),
with the index set / equipped with a well-founded order <. In the examples, we will
take for I the set of natural numbers N with the usual order <, unless explicitly
stated otherwise. For a, be 4 and a e/, let « — _ , b express that there is an indexed
reduction sequence from « to b, each reduction step having index less than a.
Analogously, a — _, b is defined.

4.6. DiscussioN. The argument in the proot of Proposition 4.1 is prototypical
for this section: the construction of completed diagrams is driven by a full set of
elementary diagrams, and terminates since the elementary diagrams have an extra
property, which ensures a decrease with respect to a well-founded order.

To be able to state what a decreasing diagram is, we need the notion of norm
of a finite reduction sequence in the ARS ./ with indexed reduction relations. This
will be a multiset of indices, but (surprise!) not all indices along the reduction
sequence. These multisets are obtained from indexed reduction sequences by three
successive operations, called index, filter, multiset, in order of application.

The first operation extracts the sequence of indices from a given reduction sequence.
If ¢ is an indexed reduction sequence, index(o) is the sequence of the indexes of the
consecutive nonempty reduction steps in o. For example,

index(a—sb—,b—yc—yd—,e)={3,2,4.4).

Recall that we use the natural numbers as a running example, but everything will
be generalized to an arbitrary well-founded partial order < on /. We will allow
ourselves a slight abuse of notation, by denoting both finite sequences of indices
and finite reduction sequences with ¢, 7. Often, we identify a reduction step with
its index. Also, <(a)-o is used for a reduction sequence starting with an a-step
followed by the reduction sequence o. If «> ', then we say that o majorizes o’

Given a finite sequence ¢ of natural numbers, filter(o) is the finite sequence
obtained by processing ¢ from left-to-right, removing the elements from ¢ that are
majorized by some previous element. For example,

filter(¢3,2,4,4,3,1,2,6,2,8.7,8.4,2,5))=(3,4,4,6,8.8).

Thus filter(o) is always a nondecreasing finite sequence.
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The last operation on finite sequences is muwltiset, yielding the multiset corre-
sponding to the finite sequence. For example,

multiset({(3,4,4,6,8,8>)=[3,4,4,6.8,8, ].

In the following we are especially interested in multiset( filter(index(a))). Now we
give the formal definitions of index, filter, and multiset.
4.7. DeriNITION.  Let R be the set of finite indexed reduction sequences. The
mapping index: R — I'* is defined by index(a—,a)=<{ ), and, for o #¢,
index(a—, b)=<{a>, index(c - 1) = index(o) - index(t).

The mapping filter: I* — I'* is defined by filter({ >)=1<¢ ) and

filter(o) if filter(o) contains an element o’ > o
filter(a) - { &) otherwise.

Silter(g - {a>) = {
The mapping multiset: I* — I* is defined by

multiset({otg, o Og_1 D) =[%gs v 0 _ 1 ]

The following observation is important: filter does not distribute over concatena-
tion of finite sequences. For example, we have

filter({1y -€0,2>) = filter((1,0,2%) = <1,2)
# 1> -<0,2) = filter(< 1Y) - filter({0,2).

4.8. DEFINITION (norm). (i) The norm |¢| of an indexed reduction sequence g
is

lo| = multiset( filter(index(a))).

(11)  The norm |D| of a diagram D is |D|= |o] &, |7], where ¢ and ¢ are the
spanning edges of D.

4.9. DeFINITION (decreasing diagram). Let D be a completed diagram with

spanning edges ¢ and 7, right edge 7', and lower edge ¢’ (see Fig. 11). Then D is
a decreasing diagram, if

lo-7'| <, | D and It-0'| <, |D|.

Here <, denotes the reflexive closure of the multiset extension <4 of < on I

4.10. Discussion. The main line of the argumentation will be as follows. First
prove that completed diagrams that are built from decreasing elementary diagrams
are decreasing. Then prove that, given an empty diagram, the procedure of
completing the diagram terminates, using the fact that all completed diagrams
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a b
IT-0'| <4 lo] Wy I7| T 7! lo-7'| <g lo| Wy 7]
c d
1
4
FIG. 11. A decreasing diagram.

involved are decreasing. It may come as a surprise that the inequalities in Fig. 11
are not strict and yet termination is guaranteed. The reason is that the norm
according to Proposition 4.18 nevertheless strictly decreases when a decreasing
elementary diagram is adjoined.

Decreasing diagrams are a useful technical device, but they have some properties
that make them hard to understand. For example, the property of being decreasing
is not preserved under extension of the order. Figure 12 presents an example of a
diagram which is decreasing with respect to the empty order (then [D|=[0.2,1] =
[<2.1,0>| =<0, 1,2>]), but not decreasing with respect to the usual order < on
natural numbers (then |D|=[0.2] and [<0, 1.2>|=[0.1.2]. so [D|<[0.1.2]).
Also. this diagram cannot be built up from elementary diagrams that are decreasing
with respect to the empty order.

We therefore define a slightly stronger notion of decreasing. which we will call
trace-decreasing. Lemma 4.14 states that trace-decreasing implies decreasing. but
not vice versa. The property of being trace-decreasing is preserved under extension
of the order. Moreover, if the order is total, then the two notions coincide, see
Lemma 4.15. Also, the two notions coincide for elementary diagrams. see
Lemma 4.16. The notion of trace-decreasing may be more cumbersome to formulate
than that of decreasing. but it has a clearer visualization (see for example Fig. 13.
with the usual order on N and n <8).

4.11. DEFINITION (trace-decreasing). Let D be a completed diagram with
spanning edges ¢ and t and right edge " and lower edge ¢ (see Fig. 11). The edges
¢ and o are dealt with symmetrically, so we restrict attention to the first, only
indicating the symmetrical case between parentheses. D is a trace-decreasing diagram
if there exists a tracing map [ (tracing map s) mapping every nonempty step int
(¢') to a nonempty step in ¢ or 7 such that the conditions (i) -(iii) below hold. Steps
that are related by the tracing maps are connected by traces. A trace is a full line
or a dashed line. Traces from 7' to © (from ¢’ to @) are called horizontal (vertical).

2z 1
of o
T2

FIG. 12. A diagram which is not decreasing when 0 <1 <2
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Traces from 7' to ¢ (or from ¢ to t) are called diagonal. We say that every step
' in 1 traces back to the step a=1(«'). In that case « is called the ancesror of o'
If a step « in 7' traces back to a step a=((«') in ¢ or in 7, then it is required that
index(«') < index(x). 1f index(o') <index(a), then o and o are connected by a
dashed line. If index(«’) = index(x), then o' and « are connected by a full line.
Symmetrically for s.

(i) Any horizontal or vertical trace can be either a full or a dashed line.
Diagonal traces can only be dashed lines.

(ii) Horizontal full lines do not cross or split. In other words, if «" and /' are
steps in 7' tracing back to a=r{a') and f=1(f") in 7 by full lines, and «’ occurs
(strictly) before f’ in ', then « occurs (strictly) before f§ in . Symmetrically for the
vertical case.

(ii1) Horizontal full lines do not cross or split from left below to right up by
a dashed line. In other words, if «' and §' are steps in 7’ tracing back to o= (o)
and f=1(f') in 7 by a dashed line and a full line, respectively, and «' occurs
(strictly) before f” in ', then a occurs (strictly) before f in 7. Symmetrically for the
vertical case.

See Fig. 13 for an example of a trace-decreasing diagram. Omitting the trivial
paralle] cases, the notion of a trace-decreasing diagram can conveniently be described
by distinguishing between allowed and forbidden configurations of the traces,
namely those in Fig. 14 and 15, respectively.

4.12. Remarks. The intuition behind the forbidden and allowed configurations
can be guided by the multiset inequalities in Fig. 11, providing necessary but not
sufficient conditions according to Lemma 4.14. Splitting full lines is forbidden since
one step on the left edge cannot be used to cancel two steps on the right edge.
A splitting full line and a dashed line as in Fig. 15¢ is also forbidden since the point
on the left edge would become overloaded. Similarly for diagonal full lines. The
forbidden crossing situations can be explained by observing that they could give
rise to forbidden splitting configurations when diagrams are adjoined. Note that

6 8 8

3

2 .\\

4 n
4 k r

3 \

1 2 6 2 8 7 8 4 2 5

FIG. 13. Example of a trace-decreasing diagram (n <8).
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FIG. 14. Allowed conligurations (one symmetrical half).

configurations as in Fig. 14a, ¢ (and also their vertical variants) are allowed. The
reason is that the majorized element on the right edge is filtered out.

Decreasing diagrams could also be visualized along the above lines. Crossing
configurations are allowed in the case of decreasing diagrams. Forbidden splitting
configurations that could arise when diagrams are adjoined are avoided by requir-
ing that all steps on the left (upper) edge that are endpoints of traces belong to |z
(lo]) instead of z(¢). This is exactly the reason why the diagram in Fig. 12 is not
decreasing when 0 <1 <2: the | on the upper edge is filtered out and therefore can
not be used.

One easily verifies in the definition above that trace-decreasing is preserved under
extension of the order, since filter is avoided.

4.13. ExamMpLES. In Figs. 16 and 17, where 0 < 1, we give examples of decreas-
ing and nondecreasing elementary diagrams. respectively. We leave it as an exercise
to the reader to reconstruct in the diagrams of Fig. 16 tracing maps according to
Definition 4.11; there is often more than one such tracing map. The general form
of a trace-decreasing elementary diagram is depicted in Fig. 18, whose justification
can be drawn from the proof of Lemma 4.16.

4.14. LEMMA. Every trace-decreasing diagram is decreasing, but not conversely.

Proof. Let D be a trace-decreasing diagram. We have to prove that the edges
of D satisfy the multiset inequalities as given Fig. 11. The edges 7" and ¢' are dealt
with symmetrically, so we restrict our attention to the first. We have |o-7'| =
lo| w, |7'| — , M, where M consists of all elements from || that are majorized by
some element from ¢. To prove that |o-7'| <, |o| w, |7]. we first cancel left and
right |o| using Lemma A.3(v). It remains to prove that [¢'| — , M <, |t]. This will
be done in the proof of Proposition 4.18, in the form of the inequality M <, 1.

A counterexample to the converse is provided in Fig. 12. As argued in Remark
4.12, this diagram is decreasing with the empty order. It is not trace-decreasing
since the traces must cross. f§

(a) (b) (c) (d)

FIG. 15. Forbidden configurations (one symmetrical half).
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0 0 1 0 0 1

FIG. 16. (Trace-)decreasing clementary diagrams.

4.15. LEMMA. Every decreasing diagram is trace-decreasing if the order is total.

Proof. Assume < is total and let D be a decreasing diagram as depicted in
Fig. 11. The edges ' and ¢’ are dealt with symmetrically, so we restrict attention
to the first. We have |o-7'| =|o| w, |t'| — » M, where M consists of all elements
from |7'| that are majorized by some element from o. From |o-7'| < , |o| W, |7]
then follows |7'| —, M < , |7| by canceling left and right |o] using Lemma A.3(v).
In the rest of this proof we will use that filter yields weakly increasing sequences as
the order is total. We assume that this sorting is maintained in the multisets |t| and
|7'|. Then M is an initial segment of |7|. If M = |7’|, then we are done by connecting
all steps in 7’ to majorizing steps in ¢ by dashed lines. Otherwise, let F be the
largest common final segment of |z| and |t'| — . M. Then either |'| —, M =|t|=F,
or there exist multisets I, I' and elements m, m’' with m'<m such that
[tl=1w, [m]w, Fand || -, M=I"w,[m'] v, F, where the right hand sides
are again assumed to be sorted as weakly increasing sequences. In both cases we
give the traces in the obvious way: connect corresponding elements of F by
horizontal full lines (of course avoiding crossings) and, in the second case, let every
element of I'w, [m'] trace back by a dashed line to m. Finally we must take care
of the steps in ¢’ that do not occur in |7'| — , M. These steps fall apart into steps
that are majorized by some step in ¢ (and connected accordingly by a dashed line)
and steps that are not majorized by some step in o, but are majorized by some
previous step in |7'|. The latter steps are connected by a dashed line to the step in
o or 7 to which the nearest previous majorizing step in |7'| traces back. One easily
checks that no forbidden configurations are introduced. This completes the proof
that D is trace-decreasing.

4.16. LEMMA. Every decreasing elementary diagram is trace-decreasing.

1 0 1 0 1

FIG. 17. Elementary diagrams which are not (trace-)decreasing.
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a 4 > b
<B
a aore
<aor <03
~ ¥
c » > % d
<o Bore <aor <B

FIG. 18. General form of a (trace-)decreasing elementary diagram.

Proof. Consider a decreasing elementary diagram D as depicted below. Note
that | D] = |a| w, |B] = [« f].

[{a) - 0’| <4 [, B] @ v KB 7| <4 [ B]

’

o

The edges 7' and ¢ are dealt with symmetrically, so we restrict attention to the
first. The multiset |{8) 7’| extends the multiset [ ] with elements at most z, as
[{B>-7'| <, [B.a]. If one of the elements of [{f) 7’| —, [ ] equals o, then T
contains exactly one a-step. In this case the steps in ' before « are majorized by
S (and connected by a dashed line with ), the step « in ¢’ is connected by a full
line with the left edge «, and the steps in 7’ after the step « are majorized by either
S or « (and are connected by a dashed line with either § or «). In the case that all
elements of [{f) -1'| —, [ B] are less than «, the steps in ¢’ are majorized by either
a or f (and are connected by a dashed line with either « or f). In both cases we
have proved that the elementary diagram is trace-decreasing. |l

Now we will establish the two important properties of trace-decreasing diagrams
that give confluence. The first states that trace-decreasing Is preserved under
adjoining along fitting edges. The second ensures that adjoining of trace-decreasing
diagrams terminates.

4.17. PROPOSITION. Let D,. D,, Dy be three trace-decreasing diagrams as in
Fig. 19. Then the diagrams which result from adjoining D, and D, along the fitting
edge T', and from adjoining D, and D along the fitting edge o', are trace-decreasing.

Proof. The proof is simply by checking that no forbidden trace configurations
arise by adjoining two trace-decreasing diagrams as indicated. The traces are conca-
tenated in the obvious way: two full lines combine into a full line, two dashed lines
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a g b b d e c Z d
T D, T’ ! D, T p Ds 3
c - d d - f g o h
o p

FIG. 19. Diagrams with fitting edges.

as well as a full line and a dashed line combine into a dashed line. In this way,
allowed configurations can only yield allowed configurations; see Fig 14. §

The second important property is indicated in Fig. 20: adjoining a decreasing
diagram to an empty diagram with spanning edges o-p and 7-p’ yields diagrams
with spanning edges 7', p and o', p', respectively, having smaller norms.

4.18. PROPOSITION. Let the trace-decreasing diagram D with spanning edges o, T
and completing edges o', t' be adjoined to an empty diagram as in Fig. 20. Assume that
o and T contain both at least one nonempty step. Let D'y be the empty diagram with
spanning edges o - p and t-p'. Then |plw, |T'| <, |Diy| and |o'| @, |p'| <, |Dg].

Proof. Both cases are dealt with symmetrically, so we restrict our attention to
one. Since |7 <, |t-p'|, it suffices to prove |7'|w, |p| <, |t| W, |o-p|. Observe
that elements of |o| may majorize elements in |p| as well as elements in |7']. It is
convenient to single out these elements. We write |[p| =M 7w, M 77 and [7'| =
MZ7@, M7, where M 77 (resp. M 77) is the multiset consisting of all occurren-
ces of elements from |p| (resp. |7'|) that are majorized by some element from |o|.
It follows that |¢-p| =|o| w, M 7. Hence we have to prove

‘a <a *o <p ‘o
MO, MZ7w0, M7, M <, 1|y, |olw, M F7.

We obviously have M 7w, M 77 <, |g|. Using Lemma A.3, it suffices to prove
that M J7 <, |7l

In order to prove M7 <, |t], we take into account the traces in D. Each step
in 7' traces back either to ¢ (a diagonal trace) or to the opposite edge t (a
horizontal trace). Diagonal traces are by definition dashed lines, which expresses
that the step in ¢’ traces back to a majorizing step in o. It follows that all steps
from M 7 trace back to 1; in other words, all traces with endpoints in M ¥ are
horizontal.

g P
T D T’
0_/
o Dy

FIG. 20. Adjoining a trace-decreasing diagram.



DIAGRAM TECHNIQUES FOR CONFLUENCE 195

Now consider the horizontal traces between steps in M 7 and steps in 7. We
compare the endpoints in M 77 with the endpoints in 7 as multisets. For this
comparison we consider all possibilities for splitting traces in Fig. 21. Configurations
(a) and (b) can be excluded by the definition of trace-decreasing. Configuration (¢)
does not occur in |7'| due to filter. Configuration (d) is unproblematic. However,
we cannot yet conclude to M 7 <, || with Lemma A.3(iv), since the endpoints in
7 may be filtered out in |z|. Fortunately, if such an endpoint in 7 is filtered out, then
there is always a majorizing previous step in r which is not filtered out. For the
purpose of the multiset inequality M *7 < . ||, we can redirect all horizontal traces
that have an endpoint in 7 which is filtered out in |7| to the nearest previous
majorizing step which is not filtered out. We must check that there are no
problematic splitting configurations introduced by this redirection (crossing is
irrelevant for multiset inequality). We first argue that majorizing steps in || that
were already used as endpoints of a /ine do not occur. In Fig. 22 we list all possible
configurations, assuming always that « is the majorizing step. so index(a) > index(f3).
Now configurations (a) and (b) can be excluded by the definition of trace-decreasing,
and configurations (c) and (d) do not occur in |7'| due to filter. Hence all majorizing
steps in || are either used as endpoints of dashed lines, or were not used as endpoints
before redirection. Hence redirection can only give rise to unproblematic splitting
configurations of type (d) in Fig. 21. This completes the proof of M 77 <, |7| and
hence of the proposition. J§

Finally, we can combine the two previous properties of trace-decreasing diagrams
to prove the main theorem.

4.19. THEOREM (Main theorem on trace-decreasing diagrams). Let ./ be the
ARS (A4, { -, |ael}), with the index set I equipped with a well-founded order <.
Let ED be a full set of (trace-)decreasing elementary diagrams. Then every diagram
built from elements of ED can be completed into a trace-decreasing diagram. As a
consequence we have that — is confluent.

Proof. It suffices to prove the theorem for empty diagrams. We use well-founded
induction with respect to the multiset order <, which is well-founded according
to Lemma A.3(ii). The proof follows the pattern of proof (i) of Newman’s Lemma 2.6.
Let D be an empty diagram. Assume the theorem has been proved for all empty
diagrams with norm smaller than |Dg|. If one of the spanning edges of D is
empty, then we are done. Otherwise, we may assume without loss of generality that
both spanning edges start with a nonempty step since possible initial empty steps
can be dealt with by trivial elementary diagrams. So let the spanning edges of D

(a) (b) (¢)

FIG. 21. Splitting configurations.
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(d)

(b)

FIG. 22. Configurations to be excluded for redirection.

be of the form {(a) .o and {f> -t for suitable «, fel and indexed reduction
sequences g, 7, see Fig. 23(1). Since ED is a full set of trace-decreasing elementary
diagrams, there exists a proper trace-decreasing elementary diagram D with spanning
edges a and . We adjoin this elementary diagram to the origin a of D and arrive
at a situation as in Fig. 23(ii). By Proposition 4.18, |D;| <, |Dg|. Hence D,
can be completed according to the induction hypothesis, say by a diagram D’.
By Proposition 4.17, adjoining D' to D yields a trace-decreasing diagram, see
Fig. 24(iil). Again by Proposition 4.18, |D%| <, |Dg|. Now D can be completed
by applying the induction hypothesis to D, see Fig. 24(iv). §

4.20. ExamMPLE (Alternative proof of Newman’s Lemma 2.6). Let &/ =(A4, —)
satisfy WCR and SN. We can recast =/ as the ARS (4, {—,|lae4}), with
—,={(a, b)|a—b}. By SN we have that <% is a well-founded order on A. The
set of elementary diagrams is full by WCR, and all elementary diagrams are
trace-decreasing by the definition of the order. By Theorem 4.19 it follows that —
1s CR.

4.21. Lemma (Hindley (1964)). Let (4, {—, |xel}) be an ARS such that for all
a, fel, —, commutes with —,. (In particular, —, commutes with itself.) Then the
union — =) { —, |ael} is confluent. (This proposition is usually referred to as the
lemma of Hindley-Rosen; see, e.g., Barendregt (1984), Proposition 3.3.5.)

Proof. Consider the ARS o/ =(A4,{ —»,|ael}), that is, with reduction
relations —-, instead of —,. Put —,=J { =, |« el}. By Proposition 2.3 we have
that —(—,) is confluent if and, only if — ( —>;) is confluent. As —» = —»,, it

a o o o
B B D 7' Dj
Dga
0/
T T
(i) (i)

FIG. 23. First two stages in the completion procedure.
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a a @ [
ﬂ D 1 7 " 7 / 1
™ D T B D T D T
a_/ 1" ’ "
(o2 o o
T D;Z/! T D"
(iii) (iv)

FIG. 24. Last two stages in the completion procedure.

suffices to prove that —, is confluent. Since —, and -, commute for all «, e, we
immediately get a full set of decreasing elementary diagrams of the form Fig. 25a for
/1 opposite edges have identical indices. Here the order on 7 is irrelevant. The
confluence follows from Theorem 4.19. [

4.22. LemMA (Rosen (1973), Staples (1975)). Ler (A, —,, —,) be an ARS.
Define — requests —, if Va,b,ce A 3d,e € A (b« ad =1 = b —yd < «— ).

(1) Suppose —| requests —, and — is confluent. Suppose moreover that
Va.b,ce A Ide A (be«—ja—c=>b—ode;c). where —3=-— .=, is the
composition of =, and —,. Then —, is confluent.

(1) If =, =, are confluent and —, requests —-, then — 5 is confluent.

Proof. As in the previous proof we shift to the ARS with reduction relations

—-, and —>,.

(1) The confluence of —, yields elementary diagrams with all edges consisting
of one reduction step —,, hence obviously decreasing. The request property gives
elementary diagrams of the form Fig. 25b and their mirror images with respect to
the diagonal, which are decreasing if we take 1>2. The other given property
gives elementary diagrams of the form Fig. 25¢, which are also decreasing when
1 >2. The total set of decreasing diagrams is full. The confluence follows from
Theorem 4.19.

(ii) By the previous case, since —, is confluent and —, € —-;. |

s 2 N S
I B
a (a) a 1 (b) 1 (c)
E E
3 2 1 2

FIG. 25. Flementary diagrams.
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4.23. Lemma (Barthe). Let (A, =, =) be an ARS such that —, is confluent and
=, and —, commute. Assume, moreover, that Ya, b,ce A 3b', ¢',de A (b <« a —» ¢
= b o, b oo d = ¢ w—ye). Alternatively, ey oy © ooy o - e - ey,

Then — 5 is confluent.

Proof.  As in the previous lemmas we shift to the ARS with reduction relations
—, and —,. From the fact that —| is confluent and —, and —, commute we get
decreasing diagrams with any order. The third property gives us elementary
diagrams of the form in Fig. 25¢, with 1 and 2 interchanged, thus decreasing with
1 <2. The total set of decreasing diagrams is full. The confluence follows from
Theorem 4.19. |

For some applications, we need a slightly stronger version of Theorem 4.19. It
aims at commutation of reduction relations rather than at confluence. It is stronger
since confluence is equivalent to self-commuting, see Definition 2.2.

4.24. Definition. Let .o/ be the ARS (A4, { -, |ael}). Let =1, U/, and let ED
be a set of elementary diagrams. We say that ED is commuting-full, if for every
proper Inner corner c¢<«, a—, b with oy €ly, a, €l,, there exists a fitting
clementary diagram in ED with completing edges ¢ = d «—; b. In other words,

opposite edges in the elementary diagram represent reduction steps with indices
from the same index subset.

4.25. Theorem (Commuting version of Theorem 4.19). Ler ./ be then ARS
(A, { =~ lael}), with the index ser I equipped with a well-founded order <. Let
I=1y0l and let ED be a commuting-full set of (trace-)decreasing elementary
diagrams. Then every diagram with spanning edges o: a =y, ¢ and T a —>p b oand
built from elements of ED, can be completed into a trace-decreasing diagram with
completing edges ¢ = d«— b. As a consequence use have that =y, and =y,
commuite.

Proof. Analogous to the proof of Theorem 4.19, loading the induction as
follows: every empty diagram with spanning edges o: a -, ¢ and T a =, b can be
completed with completing edges 7": ¢ =, d and ¢": b -, d. |

4.26. LEMMA. Let (A, =, =,) be an ARS such that — and —, commute weakly
and — 5 is SN, then —, and —, commute. (The condition —, is SN cannot be
weakened to — is SN and —, is SN.)

Proof.  Analogous to the proof of Newman’s lemma in Example 4.20, but with
Theorem 4.25 instead of 4.19. §

4.27. Lemma (Hindley (1964)). Let (A, =, =) be an ARS and suppose
Va,b,ce A3de A (b~ ja—,c=b —>d 7 ¢). Then —, and —, commute.

Proof. Write I={1} u {2} and put 1 > 2. The elementary diagrams are decreas-
ing since [{1,2,..2)I=[1]<,[L,2] and [(2,1)]=[1,2], [K2>|=[2]
<, [1.2] The set of elementary diagrams is commuting-full, so we can apply
Theorem 4.25. §
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4.28. THEOREM (Strong confluence theorem). Ler .of = (A, { = laell) be an
ARS, with the index set I equipped with a well-founded order <. Assume that </ is
strongly confluent, that is, there exists a full set of elementary diagrams as specified
in Fig.26. Then —, is confluent.

Proof. Comparing Fig. 26 with Fig. 18 one observes that the elementary
diagrams in Fig. 26 are not trace-decreasing due to two times </ instead of </ on
the right edge. However, we can exploit the fact that this happens on the right
edge only and not on both the right and the lower edge. Consider the ARS
S = (A4, { =, |ael} U =, lael}), with —, =—, =—, for every ael Put
Iy={ay|ael}. I,={a;|ael}. Order I, U]l lexicographically, that is, o, <« if
and only if a<o’ or a=2' Ai=0 A j=1. The order < on [, u I, is well founded
since < on [ is so. Every elementary diagram of ./ is transformed into an elemen-
tary diagram of .«/”' by giving all indices of horizontal steps subscript 1 and all
indices of vertical steps subscript 0. For example, take an elementary diagram as in
Fig. 26. Every index f' </ on the right edge becomes S, < f, < ff,. a becomes «,.
and o' <o becomes ay <x,. On the lower edge, o' <o« becomes o) < g, f becomes
B, and ' < ff becomes f) < f,. The result is a trace-decreasing diagram as depicted
in Fig. 27. Since the set of elementary diagrams of .o/ is full, it follows that the set
of elementary diagrams of .«/°' is commuting-full. By Theorem 4.25 we have that
—,, and —, commute. Since —, = -, = —, for every ael, it follows that —; is
confluent. §

4.29. Lemma (Huet (1980)). Ler (A, —) be an ARS. If — is strongly confluent,

that is, if Ya.b.ce A3de A(b—a—c=b— d = ¢), then — is confluent.

Proof. Take the set [ to be a singleton. Interchange b and ¢ to comply with the
format of possibly many equal step on the right edge and at most one equal step
on the lower edge. Now apply Theorem 4.28. §

4.30. LEmMa (De Bruijn (1978). 4). Let (A, { =, |a€l}) be an ARS, with < a
well-founded order on 1. Recall that — _, (=) is the union of the reduction relations
with index <o ( <a), with reflexive transitive closure — _, (= <,).

l<a or <f
d

7

<o Bore ' <aor <f3

FIG. 26. Elementary diagrams for strong confluence.

643/141/29
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e A — b
<f
¥
oo Qg Or €
+
<oy or <f1
< ¥
AN — }'}
<ao Biore <ag or <fh

FIG. 27. Trace-decreasing elementary diagram for commuting.

Assume
(1) qu[(@l.—ng—»<1-—>f.—H<x-H—-$a), and
(i) Va,ﬁEI(a<,B:>*"x'—+/f§~»<ﬁ'—)ﬁE'_H</”'H—</j)'

Then —, is confluent.

Proof. The elementary diagrams corresponding to (i) and (i1) are as follows. It
Is important to note that (ii) also allows the mirror image with respect to the
diagonal of the diagram.

53 \

al (1) lﬁa
a7 aore Za
P >

a\[ (i1) l<,3
- Tore S Y »

Elementary diagram (i) complies to the strong confluence format specified in
Fig. 26. Elementary diagram (ii) and its mirror image are even trace-decreasing and
hence also comply to the strong confluence format. It follows from the linearity of
the order that the set of elementary diagrams is full: in each of the three cases,
a=f, a<p, o> p, there exists a fitting elementary diagram to the inner corner
¢+ ,a— ;b Now apply Theorem 4.28 to conclude that -, is confluent. J

As shown in van Oostrom (1994b), the result of Geser (1990) [p. 777 can be
obtained from Theorem 4.28 along the lines of the proof of Lemma 4.30. We finish
this section with some results on the completeness of the method.
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4.31. DEFINITION.  Let .o/ =(4, —») and .o/'=(4. |-, faell) be ARSs such
that — = —,. Then ./’ is called an index ed version of .C/. We say that ./ has the
property DCR (decreasing Church-Rosser) if there exists an indexed ./ version ./
and a full set of (trace-)decreasing elementary diagrams for .o/,

We have proved in Theorem 4.19 that DCR = CR: the obvious question is whether
the converse also holds. Van Oostrom (1994b) conjectured that CR = DCR does
not hold in general, but gives a proof in the countable case. This result can be
viewed as the “completeness™ of the method of decreasing diagrams with respect to
establishing confluence in the countable case, which is a satisfactory state of
affairs. Recall the cofinality properties CP and CP = in Definition 2.4 and Lemma 2.5.

4.32. PROPOSITION.  For every ARS we have CP = DCR.

Proof. Let o/ =(A, —) be an ARS. We first define the rewrite distance d(a. b) of
ae 4, be%(a) as the minimal length of a reduction sequence from a to b. For ae 4
and X N %(a) nonempty we define the distance d(a, X) =min{d(a, x)|xe X n%(a)}.
Recall Lemma 2.5 for the definition of component and the equivalence CP = < CP.
To prove DCR for .«/, it suffices to prove this property for the (disjoint) components
of .o/. Let €(a) be a component of .«/. By CP we have CP =, so we have a (finite
or infinite) reduction sequence ¢: ¢ =a, — a; — --- which is cofinal in €(a). It is an
easy exercise that we may suppose that ¢ is acyclic. We index reduction steps in
%(a) with natural numbers as:

(1) b—-gcif b—coccursin o;ie. b=a, and ¢ =«,,, for some i = 0.

(1) b=, cifb>cand n=d(c, {a,|i=0}).
n+ 1 f

Obviously, o7/ =(%(a), {—,|ne N} ) is an indexed version of .«/. We will show that
/" satisfies DCR.

Consider ¢+, d—,,b. If m"=m=0, then the steps d —» ¢ and d — b occur in ¢
and hence coincide since ¢ is acyclic. So ¢=b and we can complete the two
diverging steps by two empty steps into a decreasing diagram. If m, m’ > 0, then we
have the situation in Fig. 28, clearly constituting a decreasing diagram. If m =0,
m' >0, then we have the situation in Fig. 29, also giving a decreasing diagram. J

/ .

o: Gy —ay > ag — - uaz———»aj

/

FIG. 28. Flementary diagram in case m, m’>0.
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0 0 4
o: ag—a —ag— o —Hd—b Hag —
/ /<\m'
m
c

FIG. 29. Elementary diagram in case m=0, m'>0.

4.33. Remark. The uncountable ARS (.f;, <), with reduction relation — = <,
provides a counterexample to DCR = CP. The property DCR holds in (.4}, <),
since we have a full set of trivial elementary diagrams, by taking the maximum of
b and ¢ as common reduct in ¢« a—b. However, CP fails, as .4 is a regular
cardinal, i.e. a cardinal without a cofinal countable subset.

By combining the previous results we obtain the following theorem.
4.34. THEOREM. For countable ARSs we have CP < DCR <« CR.

Proof. Follows by combining the results DCR = CR (Theorem 4.19), CR = CP
for countable ARSs (Lemma 2.5(ii)), and CP = DCR (Proposition 4.32). }

APPENDIX: MULTISETS

A.l. DEFINITION.  Let S be a set. A multiset M with elements from S is a
function M: S — N such that {seS|M(s)>0}, the set of elements of M, is finite.
Such M is also called a multiset over S and can be described explicitly by

M =81, S1y s Sy oo Sk 1,
"] ”A

where the n,= M(s,)(1 <i<k) give the multiplicities of the elements. In this
notation it is tacitly assumed that there are no other elements of M than those
explicitly shown. Moreover, permutations of the occurrences of elements in the
multiset are allowed and we will often leave the multiplicities implicit or will express
them by using M as a function.

The set of multisets over S will be denoted by S*. We define membership for
multisets by se , M < M(s)>0. Multiset inclusion is defined by M=, M’ if and
only if M(s)< M'(s) for all seS. As usual, <, is the strict (irreflexive) version
of <. The size | M| of a multiset M is the natural number defined by | M| = SesM(s).

Let M and M’ be multisets over S. We shall define the union, difference, and
intersection of the multisets M and M'. Actually, there are two notions of union for
multisets: one where the two multiplicities of any element are added and one where
for any element the maximum of the two multiplicities is taken. The first is dual to
multiset difference, the second is dual to multiset intersection. Given the importance
of multiplicities when dealing with multisets, we only give the first notion of union,
which can also be viewed as disjoint union. Let n@m=n—m if n=m and 0
otherwise (n, m e N). Define
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(Mo, M')s)=Ms)+ M'(s)
(M—, M')(s)=m(s)O M'(s)
(M, M')(s)=min{M(s), M'(s)}.

Multiset union and intersection are associative and commutative.

A.2. DEFINITION. Let < be a strict partial order on a set S. We will extend <
to a strict partial order <, on S*, the set of multisets over S. as follows: <, is
the smallest transitive relation satisfying

ifVxe, M x<s, then Mo, M'<, Mw,[s]

for all s€ S, and M, M’ e S#*. The intuition is that a multiset becomes smaller in
the sense of <, by replacing one or more of its elements by an arbitrary number
of smaller elements. In particular we can have M’ =[ ], in which case the element
s is simply deleted. The reflexive closure of <, will be denoted by <, (and not
by <, ).
Without proof we mention the following results concerning the multiset order.
A3. LEMMA. Let < be a strict partial order on a set S. Then:
(1) <y is a strict order on S*.
(i1) <, is well founded if and only if < is well founded.
(ii1) For all M, M'e S* we have M= , M' <> M'=(M' —, M)w, M.
(iv) Let M, M'eS* and C=Mn, M'. Then we have M<, M' < Vxe,
M—, CIye, M —, Cx<).
(v) Cancellation for multisets: for all X, Y, ZeS* we have Xwo, Y
<4 X, Ze Y<, Z (also for <,).
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